

Steve Lamoreaux, Karl van Bibber

Cosmic Frontier Workshop – 3.6.2013

ADMX-HF (Hi-Frequency) rationale & history

- Second platform focusing on
 - Higher masses 10-1000 μeV (~ 2.5 250 GHz), and
 - Sweeping out mass fast & efficiently
- ADMX-HF goal is two-fold:
 - As a data pathfinder with medium sensitivity (KSVZ or better)
 - As an innovation test-bed
- Subset of ADMX (Yale, JILA, Berkeley, LLNL)
- NSF funded 2011
 - Project going very well, and is ahead of schedule ($\Delta \approx 1 \text{ yr}$)
 - Will integrate & commission winter-spring 2013

ADMX subsumes the entirety of the US dark matter axion effort, and as a consequence now has a complete strategy

ADMX-HF at Yale is a rather small experiment!

Microwave Cavity

Dilution Refrigerator

Superconducting Magnet

ADMX-HF Layout

Dilution Refrigerator

- Purchased from VeriCold 2008
 - Base temperature < 25mK
- Works well, but beginning to show age
- Will procure new Blue Fors fridge (Finland) in about a year

Dilution refrigerator above & below deck

- Purchased from CMI
- Totally cryogen-free
- Both cost & schedule came in one-third of anticipated
- 9T, 170 H coil, persistent
- Very uniform (B_r < 50 G) for hybrid superconducting cavities
- Delivered to Yale 11/12
- Field mapping ongoing now

Microwave Cavity

- Stator-rotor tuning design
- Cavity for first run will go from 4.6 5.9 GHz
- Designed UC Berkeley, modeled Yale & U. Florida, constructed LLNL

Cavity update

- Q = 18,800 before annealing @ 300K
- Q = 27,200 after annealing
- Should be >100,000 @ 4K (without rods)
- Looks good; to ship March-April

Magnetic Shielding for JPA

- Magnet designed with bucking coil
- Double-layer can of Cryoperm
- Superconducting housing for amplifier

Josephson Parametric Amplifiers

- The first JPA is a copy of Konrad Lehnert's 4-8 GHz system (2007)
- Quantum-limited including HEMT
- Hand-deliver to Yale March-April
- HEMT already at Yale, shipped from Low Noise Amps in Sweden

Josephson Parametric
Amplifiers (JPA)
Konrad Lehnert, JILA/CU

- Natural for higher frequencies
- Broadly & easily tunable
- Operates at the SQL or below (squeezing)
- ADMX-HF will initially utilize an existing and proven system design
 - 4-8 GHz
 - Quantum-limited T

Motions designed for simplicity & robustness

(Above & Right) String & pulley mechanism for main tuner rotational motion

(Below) Spring-driven linear motion for tuning vernier and antenna coupling adjustment

The internal support structure is finished & being Au-plated; the thermal shields are being fabricated (C&E, Santa Rosa CA); ship 3/13

Thin film superconductor R&D infrastructure (I)

(See R&D talk of Gianpaolo Carosi)

RF plasma deposition setup (G&J Jones Co.)

NbTiN (few 100 nm) on 4" Quartz Tube

RBS for thickness and stoichiometry

UCB & LBNL tech spin-off; Similar setup at Yale

LBNL

Hybrid superconducting cavity R&D infrastructure (II)

RBS depth profiling Prototype 10 GHz 7T NMR magnet and stoichiometry

copper cavities

to test prototypes

First 4-wire test of a NbTiN thin film – DC superconducting at 7K

What we hope we can achieve

Summary & projection

Everything is going very well

Mechanical integration will occur hopefully late March – early April

There's a lot of wiring & cabling that needs to take place at that point

Cold commissioning & then ramping magnet with the experiment for the first time should be this summer

First data could be soon thereafter

Many thanks to NSF!